The pattern of neurodegeneration in Huntington's disease: a comparative study of cannabinoid, dopamine, adenosine and GABA(A) receptor alterations in the human basal ganglia in Huntington's disease.

نویسندگان

  • M Glass
  • M Dragunow
  • R L Faull
چکیده

In order to investigate the sequence and pattern of neurodegeneration in Huntington's disease, the distribution and density of cannabinoid CB(1), dopamine D(1) and D(2), adenosine A(2a) and GABA(A) receptor changes were studied in the basal ganglia in early (grade 0), intermediate (grades 1, 2) and advanced (grade 3) neuropathological grades of Huntington's disease. The results showed a sequential pattern of receptor changes in the basal ganglia with increasing neuropathological grades of Huntington's disease. First, the very early stages of the disease (grade 0) were characterized by a major loss of cannabinoid CB(1), dopamine D(2) and adenosine A(2a) receptor binding in the caudate nucleus, putamen and globus pallidus externus and an increase in GABA(A) receptor binding in the globus pallidus externus. Second, intermediate neuropathological grades (grades 1, 2) showed a further marked decrease of CB(1) receptor binding in the caudate nucleus and putamen; this was associated with a loss of D(1) receptors in the caudate nucleus and putamen and a loss of both CB(1) and D(1) receptors in the substantia nigra. Finally, advanced grades of Huntington's disease showed an almost total loss of CB(1) receptors and the further depletion of D(1) receptors in the caudate nucleus, putamen and globus pallidus internus, and an increase in GABA(A) receptor binding in the globus pallidus internus. These findings suggest that there is a sequential but overlapping pattern of neurodegeneration of GABAergic striatal efferent projection neurons in increasing neuropathological grades of Huntington's disease. First, GABA/enkephalin striatopallidal neurons projecting to the globus pallidus externus are affected in the very early grades of the disease. Second, GABA/substance P striatonigral neurons projecting to the substantia nigra are involved at intermediate neuropathological grades. Finally, GABA/substance P striatopallidal neurons projecting to the globus pallidus internus are affected in the late grades of the disease. In addition, the finding that cannabinoid receptors are dramatically reduced in all regions of the basal ganglia in advance of other receptor changes in Huntington's disease suggests a possible role for cannabinoids in the progression of neurodegeneration in Huntington's disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Loss of striatal type 1 cannabinoid receptors is a key pathogenic factor in Huntington's disease.

Endocannabinoids act as neuromodulatory and neuroprotective cues by engaging type 1 cannabinoid receptors. These receptors are highly abundant in the basal ganglia and play a pivotal role in the control of motor behaviour. An early downregulation of type 1 cannabinoid receptors has been documented in the basal ganglia of patients with Huntington's disease and animal models. However, the pathoph...

متن کامل

P138: Are Depression and Anxiety Affected by Adenosine A2A Receptors?

Adenosine acts as neuromodulator in the brain, which its involvement in a wide range of brain processes and diseases has been studied, such as epilepsy, sleep, anxiety, panic disorder, Alzheimer’s disease, Parkinson’s disease and schizophrenia. Adenosine receptors have been detected: A1R, A2AR (A2AR), A2BR, and A3R. A1R and A2R inhibit cAMP production, while A2AR and A2BR stimulate cAMP product...

متن کامل

Behavioral study of effects of mesenchymal stem cells transplant on motor deficits improvement in animal model of Huntington\'s disease

Introduction: As an inherited neurodegenerative disease, Huntington's disease is accompanied with wide neuronal degeneration in neostriatum and neocortex. Progress of the disease causes disabling clinical effects on movements, recognition and physiology of the body, and finally results in death. At this stage of knowledge we are, there is no effective therapeutic strategy for diminishing the mo...

متن کامل

Dysregulation of Corticostriatal Connectivity in Huntington’s Disease: A Role for Dopamine Modulation

Aberrant communication between striatum, the main information processing unit of the basal ganglia, and cerebral cortex plays a critical role in the emergence of Huntington's disease (HD), a fatal monogenetic condition that typically strikes in the prime of life. Although both striatum and cortex undergo substantial cell loss over the course of HD, corticostriatal circuits become dysfunctional ...

متن کامل

Combined lesions of direct and indirect basal ganglia pathways but not changes in dopamine levels explain learning deficits in patients with Huntington's disease.

Huntington's disease (HD) is a hereditary neurodegenerative disease of the basal ganglia that causes severe motor, cognitive and emotional dysfunctions. In the human basal ganglia, these dysfunctions are accompanied by a loss of striatal medium spiny neurons, dysfunctions of the subthalamic nucleus and globus pallidus, and changes in dopamine receptor binding. Here, we used a neuro-computationa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuroscience

دوره 97 3  شماره 

صفحات  -

تاریخ انتشار 2000